Time Fractional Schrodinger Equation Revisited
نویسندگان
چکیده
منابع مشابه
The Fractional Langevin Equation: Brownian Motion Revisited
It is well known that the concept of diffusion is associated with random motion of particles in space, usually denoted as Brownian motion, see e.g. [1-3]. Diffusion is considered normal when the mean squared displacement of the particle during a time interval becomes, for sufficiently long intervals, a linear function of it. When this linearity breaks down, degenerating in a power law with expo...
متن کاملFinite time extinction by nonlinear damping for the Schrodinger equation
We consider the Schrödinger equation on a compact manifold, in the presence of a nonlinear damping term, which is homogeneous and sublinear. For initial data in the energy space, we construct a weak solution, defined for all positive time, which is shown to be unique. In the one-dimensional case, we show that it becomes zero in finite time. In the two and three-dimensional cases, we prove the s...
متن کاملSymplectic splitting operator methods for the time-dependent Schrodinger equation.
We present a family of symplectic splitting methods especially tailored to solve numerically the time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized high-dimensional separable harmonic oscillator. The structure of the system allows us to build highly ef...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملNumerical Analysis of the Time Independent Schrodinger Equation
Numerical solutions to the Time Independent Schrodinger Equation (TDSE) were analyzed using the open source programming language python and using various numerical schemes to compare accuracy of solutions in space, time, and energy. The methods involved were Euler, fourth order Runge-Kutta (RK4), second order Runge-Kutta (RK2), and leapfrog. Furthermore, the time independent solutions were then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2013
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2013/290216